The interdisciplinary field of Biomedical Engineering (BME) combines elements of engineering (electronics, systems analysis, mechanics) with the life sciences (biology, physiology, biochemistry) to define and solve problems in biology and medicine.

**MAJORS & AREAS OF EMPHASIS**

- Biomedical Engineering
- Biomedical (Molecular-Cellular) Engineering
- Biomedical (Electrical) Engineering
- Biomedical (Mechanical) Engineering

**HELP OTHERS LIVE BETTER**

Students choose this branch of engineering for the excitement of working with people and living systems, and for the opportunity to apply advanced technology to the complex problems of medical care.

Students can participate in a variety of directed study courses or classroom projects at facilities such as the Los Angeles County+USC Medical Center, the Biomedical Simulations Resource Center, the Medical Ultrasonic Transducer Resource Center, Rancho Los Amigos National Rehabilitation Center and Children’s Hospital-Los Angeles (CHLA).

**EMPHASES & OPTIONS**

While many students choose a primary degree in Biomedical Engineering with no added specialization, we do offer the opportunity to deepen to your education in three separate emphasis programs: Molecular-Cellular (BMCE), Electrical (BMEN), and Mechanical (BMEL).

Biomedical (Molecular-Cellular) Engineering (BMCE) harnesses aspects on the nano, molecular, cellular, tissue, and organism level in order to explore biological and disease systems, often towards a healthcare need. As a BMCE student, you will take additional coursework in areas like Nanomedicine and Drug Delivery, Tissue Engineering, and Systems Biology.

Biomedical (Electrical) Engineering (BMEN) is for students interested in the building of electronic biomedical devices and the effects of electrical stimulation. As a BMEN student, you’ll take additional coursework in areas like Linear Circuits, Digital Logic, Electromagnetics and Digital Electronic Circuit Design.

Biomedical (Mechanical) Engineering (BMEL) is for students interested in the mechanics and dynamics of medical devices and biological systems. As a BMEL student, you will take additional coursework in areas like Mechanics, Thermodynamics, Biomechanics, Materials Behavior and Processing, and Fluid Mechanics.

The BME programs are easily adapted to include the prerequisites for most medical schools, while also providing applied technical training beyond the basic life sciences. USC Pre-Med students are supported throughout the medical school application process by the Pre-Health Advisement office. Graduates go on to attend top medical, dental and pharmacy schools around the country, including the USC Keck School of Medicine.

**RESEARCH HIGHLIGHTS**

System Modeling And Simulation, Systems Biology, Systems Pharmacology, Microphysiological Systems, Tissue Engineering, Biomaterials, Nanomedicine, Cancer Microenvironment, Sensory Neurophysiology, Sensorimotor Control, Cardio-Respiratory Control And Dynamics, Computational Neurobiology, Mechanisms Of Memory And Learning, Ultrasonic Imaging, Laser Scanning And Light Sheet Imaging, Medical Imaging, Multimodal Imaging, Biomedical Photonics, Implantable And Wearable Biomedical Devices, Neural Prostheses, Retinal Prostheses, Cortical Prostheses.

**COMPANIES HIRING YOU**

Abbott Laboratories, Advanced Bionics, Alfred E. Mann Institute, Amgen, Applied Medical, Biosense Webster, Edwards Lifesciences, Lifescan, Medtronic, Neutrogena, Nike... And many more!

**CAREER OPTIONS**

- Build advanced therapeutic & surgical devices
- Create safe implantable artificial materials
- Become physicians or pharmacists
- Conduct biomedical research
- Develop artificial organs
- Design prosthetics
- Improve medical imaging devices

**FACULTY HIGHLIGHTS**

*Professor Eun-Ji Chung’s research group* focuses on molecular design, nanomedicine, and biomaterial strategies to address the limitations of clinical solutions. In particular, the group is interested in self assembling micelle systems that can be designed to deliver molecular signals to report back on or influence the behavior of diseased tissue for drug delivery and diagnostic applications. In addition, the group is harnessing its expertise in combining biomimetic scaffolds with novel stem cell sources for complex regeneration of hierarchically-ordered tissues and organs. The group is highly interdisciplinary as its research is positioned at the intersection of engineering, biology, and medicine.
**Professor Stacey Finley** is answering unresolved questions about the way cells behave by applying a systems biology approach—she builds multiscale computational models and combines them with quantitative experimental studies to explore the emergent behaviors of biological systems. She is working to quantitatively understand the dynamics of key signaling and metabolic networks in cancer, providing detailed insight needed to answer outstanding questions in cancer. Her research group has made significant contributions in the study of new blood vessel formation (called “angiogenesis”), and cellular metabolism, and immune cell activation. Professor Finley’s long-term mission is to translate a quantitative understanding of the biochemical reaction networks driving immune cell activation into strategies that can be used to modulate the cells’ behavior and control tumor growth.

**Prof. Megan L. McCain's** Laboratory for Living Systems Engineering focuses on three research areas: (1) Microfabrication of surfaces and fluidic devices for engineering biomimetic models of cardiac and skeletal muscle tissues; (2) Development of assays to interrogate the structure and function of engineered cardiac and skeletal muscle tissues; (3) Implementation of engineered model tissues and assays to investigate mechanobiology and mechanisms of disease. The Laboratory for Living Systems Engineering also collaborates with several labs across USC to integrate additional technologies into their research, including bioelectronics, synthetic biology, and patient-derived stem cell derivatives.

**Prof. Ellis Meng’s** Biomedical Microsystems Laboratory at the University of Southern California focuses on developing novel translational microtechnologies and microdevices for biomedical applications, in particular medical implants. Often the last line of defense for combating a wide range of challenging medical conditions, implants help extend and improve the quality of life for many. This industry continues to be fueled by the growing number of elderly and increased prevalence of chronic diseases. The application of microelectromechanical systems technology and medical polymer micromachining will enable the next generation of advanced medical implants that are needed to address urgent unmet clinical needs. In particular, we are interested in the integration of multiple modalities (e.g., electrical, mechanical, and chemical) in miniaturized devices measuring no more than a few millimeters for use in fundamental scientific research, biomedical diagnostics, and therapy. Projects in the lab include electrode-based neural interfaces for use in different parts of the nervous system and sensor technologies and systems for the monitoring of life-sustaining drainage shunts in hydrocephalus.

**Prof. Michael Maylohn & Dinesh Seemakurty’s** Biomedical Engineering research group has made significant contributions in the study of new blood vessel formation (called “angiogenesis”), and cellular metabolism, and immune cell activation. Professor Finley’s long-term mission is to translate a quantitative understanding of the biochemical reaction networks driving immune cell activation into strategies that can be used to modulate the cells’ behavior and control tumor growth.

**Ruchie Bhardwaj | B.S. Biomedical Engr. ‘16**
Ruchie is currently pursuing her MBA at MIT Sloan School of Management. After leaving USC, she worked as an Associate in Digital Health at Amgen where she assessed new technologies to transform the patient experience in areas that include Personalized Medicine, Clinical Trials, Electronic Health Records, Digital Marketing, Mobile Fitness Applications and Wearables. She later worked at 23andMe exploring uses of genetic data before returning to graduate work.

**Gabriel Glasser | B.S. Biomedical Engr. ‘16**
While at USC, Gabriel discovered his passion for sports medicine and biomechanics research at USC’s Human Performance Lab studying gait mechanics of athletes recovering from ACL injuries. After graduation, he worked in the biomechanics lab of Motus Global alongside professional athletes to test and improve their performance. In this role, he worked on wearables technology aimed at reducing the prevalence of throwing injuries for MLB pitchers and NFL quarterbacks. More recently, he earned a Masters in Biomedical Engineering from USC and started working as a Biomedical Engineer at BTS Bioengineering in Boston.

**Michael Maylohn & Dinesh Seemakurty | B.S. Biomedical Engr. ‘15**
During their senior year, Michael and Dinesh tested the waters of a new medical device business through USC competitions. After receiving numerous accolades, the two of them started Stasis Labs where they are currently building an innovative health monitoring system for hospitals and clinics across the world.

**Andrianna Ayiotis | B.S. Biomedical Engr. ‘17**
Andrianna is currently a PhD Candidate in Biomedical Engineering at Johns Hopkins University where she works on a first-in-human clinical trial of an inner ear neural implant that restores balance function. She decided to pursue graduate school after participating in the USC-Tsinghua Summer Research Program and conducting research with multiple USC professors during her time on campus. At USC, Andrianna spent her time outside of class tutoring her peers through the Viterbi Academic Resource Center (VARC), the Navy ROTC program, and the Society of Hispanic Professional Engineers (SHPE) Study Nights.
# Biomedical Engineering

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>SECOND YEAR</th>
<th>THIRD YEAR</th>
<th>FOURTH YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALL</td>
<td>SPRING</td>
<td>FALL</td>
<td>SPRING</td>
</tr>
<tr>
<td>BME 101</td>
<td>MATH 126</td>
<td>BME 423</td>
<td>BME 403L</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>CHEM 105aL</td>
<td>BME 302L</td>
<td>BME 405L</td>
</tr>
<tr>
<td>MATH 125</td>
<td>GEN ED</td>
<td>GEN ED</td>
<td>GEN ED</td>
</tr>
<tr>
<td>CHEM 105aL</td>
<td>GEN ED</td>
<td>PHYS 152L</td>
<td>BISC 320L</td>
</tr>
<tr>
<td>GEN ED</td>
<td>OPTIONAL ELECTIVE</td>
<td>OPTIONAL ELECTIVE</td>
<td>OPTIONAL ELECTIVE</td>
</tr>
<tr>
<td>WRIT 150</td>
<td>OPTIONAL ELECTIVE</td>
<td>OPTIONAL ELECTIVE</td>
<td>WRIT 340</td>
</tr>
</tbody>
</table>

## ENGINEERING
- **BME 101**: Introduction to Biomedical Engineering
- **BME 202**: Control & Communication in the Nervous System
- **BME 210**: Biomedical Computer Simulation Methods
- **BME 302L**: Medical Electronics
- **BME 403L**: Physiological Systems
- **BME 405L**: Senior Projects: Measurements & Instrumentation
- **BME 410**: Introduction to Biomaterials & Tissue Engineering
- **BME 413**: Bioengineering Signals & Systems
- **BME 415**: Regulation of Medical Products
- **BME 423**: Statistical Methods in Biomedical Engineering
- **EE 202L**: Linear Circuits
- **ENGR 102**: Engineering Freshman Academy
- **BME & TECHNICAL ELECTIVES**: Specialized upper division courses you choose for your major/specialization.

## MATHEMATICS
- **MATH 125**: Calculus I
- **MATH 126**: Calculus II
- **MATH 226**: Calculus III
- **MATH 245**: Mathematics of Phys. & Engr.

## SCIENCE
- **BISC 220L**: Cell Biology & Physiology
- **BISC 320L**: Molecular Biology
- **CHEM 105aL**: General Chemistry
- **CHEM 322abL**: Organic Chemistry
- **PHYS 151L**: Mechanics & Thermodynamics
- **PHYS 152L**: Electricity & Magnetism

## GENERAL EDUCATION
- As a USC Viterbi student your General Education (Gen Ed) curriculum will include courses in the Arts, Humanistic Inquiry and Social Analysis.

## ELECTIVES
Your optional electives are one way to build engineering+ into your curriculum by choosing classes of interest to you.

Courses with this symbol may be satisfied with certain AP, IB or A-Level exams. With each requirement you replace with prior credit, you increase your optional electives, creating more flexibility for you to pursue additional electives and increase your engineering+ education.

This is a simplified version of a complex curriculum with options and choices made between advisor and student. Course choices can vary by semester and adjust to include relevant topics and materials. Although every attempt has been made to ensure accuracy, the program requirements listed in the USC Catalogue supersede any information which may be contained in this or any other publication of any school or department. The information found in this document is not intended for advising purposes. The university reserves the right to change its policies, rules, regulations, requirements and course offerings at any time.
### Biomedical (Mollemar-Cellular) Engr.

#### FIRST YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 101</td>
<td>MATH 126</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>CHEM 105aL</td>
</tr>
<tr>
<td>MATH 125</td>
<td>GEN ED</td>
</tr>
<tr>
<td>CHEM 105aL</td>
<td>GEN ED</td>
</tr>
<tr>
<td>WRIT 150</td>
<td>OPTIONAL ELECTIVE</td>
</tr>
</tbody>
</table>

#### SECOND YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 202</td>
<td>BME 210</td>
</tr>
<tr>
<td>MATH 226</td>
<td>MATH 245</td>
</tr>
<tr>
<td>PHYS 151L</td>
<td>BISC 220L</td>
</tr>
<tr>
<td>GEN ED</td>
<td>PHYS 152L</td>
</tr>
<tr>
<td>GEN ED</td>
<td>CHEM 322aL</td>
</tr>
<tr>
<td>OPTIONAL ELECTIVE</td>
<td>OPTIONAL ELECTIVE</td>
</tr>
</tbody>
</table>

#### THIRD YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 423</td>
<td>PANEL COURSE 2</td>
</tr>
<tr>
<td>PANEL COURSE 1</td>
<td>TECHNICAL ELECTIVE</td>
</tr>
<tr>
<td>BME 413</td>
<td>BME 415 or 416L</td>
</tr>
<tr>
<td>PANEL COURSE 3</td>
<td>WRIT 340</td>
</tr>
</tbody>
</table>

#### FOURTH YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>SPRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 403L</td>
<td>BME 405L</td>
</tr>
<tr>
<td>BME 413</td>
<td>BME 415 or 416L</td>
</tr>
<tr>
<td>EE 202L</td>
<td>CHE 489</td>
</tr>
</tbody>
</table>

### ENGINEERING

- **BME 101**: Introduction to Biomedical Engineering
- **BME 202**: Control & Comm. in the Nervous System
- **BME 210**: Biomedical Comp. Simulation Methods
- **BME 403L**: Senior Projects: Measurements & Instrumentation
- **BME 413**: Bioengineering Signals & Systems
- **BME 415**: Regulation of Medical Products
- **BME 416L**: Development & Regulation of Medical Products
- **BME 423**: Stat. Methods in Biomedical Engineering
- **CHE 489**: Biochemical Engineering
- **EE 202L**: Linear Circuits
- **ENGR 102**: Engineering Freshman Academy
- **PANEL COURSES (CHOOSE 3)**:
  - **BME 406**: Intro. to Bioengineering in Medicine
  - **BME 410L**: Intro. to Biomaterials & Tissue Engr.
  - **BME 430**: Principles and Apps. of Systems Biology
  - **BME 459L**: Intro. to Nanomedicine & Drug Delivery

### MATHEMATICS

- **MATH 125**: Calculus I
- **MATH 126**: Calculus II
- **MATH 226**: Calculus III
- **MATH 245**: Mathematics of Phys. & Engr.

### SCIENCE

- **BISC 220L**: Cell Biology & Physiology
- **BISC 320L**: Molecular Biology
- **BISC 330L**: Biochemistry
- **CHEM 105abL**: General Chemistry
- **CHEM 322abL**: Organic Chemistry
- **PHYS 151L**: Mechanics & Thermodynamics
- **PHYS 152L**: Electricity & Magnetism

### GENERAL EDUCATION

As a USC Viterbi student your General Education (Gen Ed) curriculum will include courses in the Arts, Humanistic Inquiry and Social Analysis.

### ELECTIVES

Your optional electives are one way to build engineering+ into your curriculum by choosing classes of interest to you.

Courses with this symbol may be satisfied with certain AP, IB or A-Level exams. With each requirement you replace with prior credit, you increase your optional electives, creating more flexibility for you to pursue additional electives and increase your engineering+ education.

- WRIT 150: Writing & Critical Reasoning
- WRIT 340: Advanced Writing

This is a simplified version of a complex curriculum with options and choices made between advisor and student. Course choices can vary by semester and adjust to include relevant topics and materials. Although every attempt has been made to ensure accuracy, the program requirements listed in the USC Catalogue supersede any information which may be contained in this or any other publication of any school or department. The information found in this document is not intended for advising purposes. The University reserves the right to change its policies, rules, regulations, requirements and course offerings at any time.
**Biomedical (Electrical) Engr.**

<table>
<thead>
<tr>
<th>FIRST YEAR</th>
<th>SECOND YEAR</th>
<th>THIRD YEAR</th>
<th>FOURTH YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FALL</strong></td>
<td><strong>SPRING</strong></td>
<td><strong>FALL</strong></td>
<td><strong>SPRING</strong></td>
</tr>
<tr>
<td>BME 101</td>
<td>BME 202</td>
<td>BME 423</td>
<td>BME 403L</td>
</tr>
<tr>
<td>MATH 126</td>
<td>BME 210</td>
<td>EE 338 or 354L</td>
<td>BME 405L</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>ITP 165</td>
<td>EE 202L</td>
<td>BME 413</td>
</tr>
<tr>
<td>CHEM 105aL</td>
<td>EE 109L</td>
<td>EE 250L</td>
<td>BME 415 or 416L</td>
</tr>
<tr>
<td>MATH 125</td>
<td>MATH 226</td>
<td>TECHNICAL ELECTIVE</td>
<td>BISC 320L</td>
</tr>
<tr>
<td>GEN ED</td>
<td>MATH 245</td>
<td>GEN ED</td>
<td>TECHNICAL ELECTIVE</td>
</tr>
<tr>
<td>CHEM 105aL</td>
<td>PHYS 151L</td>
<td>PHYS 152L</td>
<td>BISC 320L</td>
</tr>
<tr>
<td>GEN ED</td>
<td>PHYS 152L</td>
<td>TECHNICAL ELECTIVE</td>
<td>GEN ED</td>
</tr>
<tr>
<td>WRIT 150</td>
<td>WRIT 340</td>
<td>WRIT 340</td>
<td>CHEM 322aL</td>
</tr>
<tr>
<td>OPTIONAL ELECTIVE</td>
<td>OPTIONAL ELECTIVE</td>
<td>GEN ED</td>
<td>TECHNICAL ELECTIVE</td>
</tr>
</tbody>
</table>

**ENGINEERING**

- **BME 101**: Introduction to Biomedical Engineering
- **BME 202**: Control & Comm. in the Nervous System
- **BME 210**: Biomedical Comp. Simulation Methods
- **BME 403L**: Physiological Systems
- **BME 405L**: Senior Projects: Measurements & Instrumentation
- **BME 413**: Bioengineering Signals & Systems
- **BME 415**: Regulation of Medical Products
- **BME 416L**: Development and Regulation of Medical Products
- **BME 423**: Statistical Methods in Biomedical Engineering
- **EE 109L**: Introduction to Embedded Systems
- **EE 202L**: Linear Circuits
- **EE 250L**: Distributed Systems for the Internet of Things
- **EE 338**: Physical Electronics
- **EE 354L**: Introduction to Digital Circuits
- **EE 438L**: Electronic Circuits
- **EE 454L**: Introduction to System-on-Chip
- **ENGR 102**: Engineering Freshman Academy
- **ITP 165**: Introduction to C++ Programming

**MATHEMATICS**

- **MATH 125**: Calculus I
- **MATH 126**: Calculus II
- **MATH 226**: Calculus III
- **MATH 245**: Mathematics of Phys. & Engr.

**SCIENCE**

- **BISC 220L**: Cell Biology & Physiology
- **BISC 320L**: Molecular Biology
- **CHEM 105aL**: General Chemistry
- **CHEM 322aL**: Organic Chemistry
- **PHYS 151L**: Mechanics & Thermodynamics
- **PHYS 152L**: Electricity & Magnetism

**GENERAL EDUCATION**

As a USC Viterbi student your General Education (Gen Ed) curriculum will include courses in the Arts, Humanistic Inquiry and Social Analysis.

**WRITING**

- **WRIT 150**: Writing & Critical Reasoning
- **WRIT 340**: Advanced Writing

**ELECTIVES**

Your optional electives are one way to build engineering+ into your curriculum by choosing classes of interest to you.

Courses with this symbol may be satisfied with certain AP, IB or A-Level exams. With each requirement you replace with prior credit, you increase your optional electives, creating more flexibility for you to pursue additional electives and increase your engineering+ education.

This is a simplified version of a complex curriculum with options and choices made between advisor and student. Course choices can vary by semester and adjust to include relevant topics and materials. Although every attempt has been made to ensure accuracy, the program requirements listed in the USC Catalogue supersede any information which may be contained in this or any other publication of any school or department. The information found in this document is not intended for advising purposes. The university reserves the right to change its policies, rules, regulations, requirements and course offerings at any time.
### Biomedical (Mechanical) Engr.

#### First Year
- **FALL**
  - BME 101
  - MATH 125
  - GEN ED
  - CHEM 105aL
  - WRIT 150
- **SPRING**
  - BME 202
  - MATH 126
  - CHEM 105bL
  - Optional Elective
  - Optional Elective

#### Second Year
- **FALL**
  - BME 202
  - MATH 226
  - PHYS 151L
  - BISC 220L
  - GEN ED
- **SPRING**
  - BME 423
  - MATH 245
  - PHYS 152L
  - CHEM 322aL
  - GEN ED

#### Third Year
- **FALL**
  - BME 403L
  - AME 201
  - AME 301
  - TECHNICAL ELECTIVE
  - TECHNICAL ELECTIVE
- **SPRING**
  - BME 413
  - AME 309
  - TECHNICAL ELECTIVE
  - TECHNICAL ELECTIVE

#### Fourth Year
- **FALL**
  - BME 404
  - BME 415 or 416L
  - AME 301
  - AME 301
  - AME 309
- **SPRING**
  - Optional Elective
  - WRIT 340
  - TECHNICAL ELECTIVE
  - TECHNICAL ELECTIVE

### Engineering Courses
- **AME 201**: Statics
- **AME 204**: Strength of Materials
- **AME 301**: Dynamics
- **AME 308**: Computer-Aided Analyses for Aero-Mechanical Design
- **AME 309**: Dynamics of Fluids
- **BME 101**: Introduction to Biomedical Engineering
- **BME 202**: Control & Comm. in the Nervous System
- **BME 210**: Biomed. Computer Simulation Methods
- **BME 403L**: Physiological Systems
- **BME 404**: Orthopaedic Biomechanics
- **BME 405L**: Senior Projects: Measurements & Instrumentation
- **BME 413**: Bioengineering Signals & Systems
- **BME 415**: Regulation of Medical Products
- **BME 418L**: Development and Regulation of Medical Products
- **BME 423**: Stat. Methods in Biomedical Engineering
- **EE 202L**: Linear Circuits
- **ENGR 102**: Engineering Freshman Academy
- **MASC 310**: Materials Behavior & Processing
- **TECHNICAL ELECTIVES**: Specialized upper division courses you choose for your major/specialization.

### Mathematics Courses
- **MATH 125**: Calculus I
- **MATH 126**: Calculus II
- **MATH 226**: Calculus III
- **MATH 245**: Mathematics of Phys. & Engr.

### Science Courses
- **BISC 220L**: Cell Biology & Physiology
- **BISC 320L**: Molecular Biology
- **CHEM 105abL**: General Chemistry
- **CHEM 322aL**: Organic Chemistry
- **PHYS 151L**: Mechanics & Thermodynamics
- **PHYS 152L**: Electricity & Magnetism

### General Education
As a USC Viterbi student, your General Education (Gen Ed) curriculum will include courses in the Arts, Humanistic Inquiry and Social Analysis.

### Writing
- **WRIT 150**: Writing & Critical Reasoning
- **WRIT 340**: Advanced Writing

### Electives
Your optional electives are one way to build engineering+ into your curriculum by choosing classes of interest to you.

Courses with this symbol may be satisfied with certain AP, IB or A-Level exams. With each requirement you replace with prior credit, you increase your optional electives, creating more flexibility for you to pursue additional electives and increase your engineering+ education.

This is a simplified version of a complex curriculum with options and choices made between advisor and student. Course choices can vary by semester and adjust to include relevant topics and materials. Although every attempt has been made to ensure accuracy, the program requirements listed in the USC Catalogue supersede any information which may be contained in this or any other publication of any school or department. The information found in this document is not intended for advising purposes. The University reserves the right to change its policies, rules, regulations, requirements and course offerings at any time.